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SUMMARY

A solution of the hydrodynamic equations is preosnted which describes
a spherically symmetric shock wave in a polytropic gas resulting from
the instantaneous release of an arbitrary amount of energy in the cen-

ter. The external force of gravity as well as some variable density
and pressure distribution of the undisturbed medium are taken into
account. It is shown that the headqf the outwards moving shock wvave
is located at a distance R(t) =a t-  from the center. The constant
a is determined from the adiabatic exponent of the gas, the densit-r
and pressure coefficients of the ambient medium and the amount of
energy supplied by the explosion.
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INTRO DUCTIO N

Sir G. I. Taylor r1 1 found a solution of the hydrodynamic equations

which represents a spherically symmetric strong-shock wave in a
polytropic gas resulting from a very intense explosion in the center.
He neglected the gravitational effect and assumed further that den-
sity and pressure of the ambient medium are constant and zero,
respectively. The latter assumption restricts the solution automatic-
ally to the strong-shock regime.

Other strong-shock solutions of Taylor's type have been found with
regard to the geometry of the problem F27, and with regard to the
inclusion of an additional heat flux term in the hydrodynamic equations

r3 . The spherically symmetric blast wave problem including the
gravitational effect and some variable density distribution of the

ambient medium has been solved for a strong shock in 141.

The purpose of the present investigation is to provide a spherically
symmetric solution of Taylor's type for an arbitrary (strong or weak)
shock under consideration of the gravitational effect and some density
and pressure distribution of the ambient gas as functions of the dis-
tance from the center. This solution may be applied, for example,
to the description of the hydrodynamic phenomenae resulting from
the birth of a nova.

iv
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a

ANALYTIC FORMULATIONS AND ASSUMPTIONS
a

The problem is to determine radial particle velocity u, pressure p
and density 0 within an outwards moving spherically syrmIrmetric
shock wave as functions of radial d;stance r from the center and
time t. In ihe case of a polytropic gas with the adiabatic constant y,
these quantities have to satisfy the hydrodynamic equations

± 1 (r e ou) -

+ Ep0at r r

bu3u 6 U -p 3T

t -v ___T___ _

(Pv)+ u (P_ 0
)t + r

where - (r) is the gravitational potential per unit mass. A further
unknown in the problem is the position r :- R(t) of the shock front
at time t after the explosion occurred.

The solutions u, p and C of the hydrodynamic equations (1) are sub-
ject to the Rankine-Hugoniot transition conditions at the head of the
shock wave. Let u,, p, and 0, denote the values of u, p and 0
immediately behind the shock front, and U, p. and P0 those
immediately ahead of the shock front. The Rankine-Hugoniot rela-
tions are

pi(R - u-) (R - %) = 0

pluj (R-u)- ( -uo) p1 - po (2)

p 2 p 1 c 1 pu .)
Iu 1 )-z 0 (-u -- )(R -u)u)

Pl ul - PC Uo

Here, R stands for the velocity of the shock front.
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The second restriction on u. p, and 0 is that the arnount of energy
supplied by the (instantaneous) explosion is to be constant with res-
pect to time after the burst. If uo*(r), po' (r) and Po '"(r denote
the particle velocity, pressure and density of the gas in the (station-
ary) case prior to the explosion, this amount of energy is given by

R(t)

E = 4-r 1 1 - ,oUor 2 P 0 41 
+

o u (3)
0

1 (p - pc') I r 2 dr

The second requirement can be expressed by the equation

AE 0, t> to = 0 (4)

where t = to denotes the instant when the explosion occurs.

We assume the functions uo' (r), po*(r), %*(r) and the gravitational
potential 7(r) to be of the form

u_(r) 0

p-(r)

Y-'(r) =-4,-
r

3X I-(r) . . . . .
0 r

Here X and u are positive constants. Note that these functions do
solve the hydrodynamic equations in the stationary (or more pre-
cisely: in the quiescent) case.

For r = R, the quantities uc".=(R), pc".:(R) and oo*(R) are identical
with uc, p. and az, respectively. The Rankine-Hugoniot relations
(2), therefore, can be written as

2
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2 X

- z R2 (y
.-  (62

RR L (Y+ 1 R+-v
SR

The energy supplied by the explosion is then given by

R(t)
P Fl u2 3X 1 1E = 4TT ; p u + -"-- (P - + -+ (P - a re d

1- r r Y- r
0 (7)
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PROGRESSING SHOCK WAVE

Following a classical procedure, we try to solve the present problem

by assuming the form of "progressing waves" for the solutions in order

to reduce the hydrodynamic equations to a system of ordinary differ-

ential equations. These are solutions conveniently written as

u(r,t) = a(r) U(x)

p(r,t) = b(r) P(x) (8)

0(r, t) = c (r) " Q(x)

where x is the combination

x(r,t) = h(r) (9)
t

Inserting equations (8) and (9) into the hydrodynamic equations (1),

we obtain by straightforward computation the equations

c r r 2c
c 2 , + h Zac] u+ ah'x (Uq'= 0

a f 2 1 1 2 1 'h P bh' P' _ 3X .1

a-x2U'+ a'hU2+ ah'xUU' -+ * j P' - 3
aac 2

bc- r 2 - b' c 'f Y -
hI -x(PQ- )'U ah(- - V-)(P-Y )+ah'x(PQ Y'I -

h b cP 0

Here a prime denotes the derivative with respect to the argument of

the function. Solutions of equations (10) can be obtained by separation
of the variables r and x. The separability conditions are

4
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ah' -const.

a'-- c n t
ak const.

h r2

r

Zac =cons.G 1

- ac)

bh' = const.
ac

ah r- - Y c' const.

The first three equations yield

a(r) a /

3/2 (1 2a)
h r)

while b and c are obtained from the remaining equations as

Mr) r1- 1/2

( r ) U- 1 2 
1rb

OL, 03, 6,CT and Jare constants.

The position of the shock can be determined by setting

h (r) _KrN -\ /2 1 or r =R(t) = Cr / (13)
x - -

5
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Without limitation of _;enerality we can choose

(14)

The energy supplied by the explosion is then given by

E = 4T- L7'u r 1  Q(x) U (x) + 3 X(r AQ(x) -r-)
0' 

(15-1

(r P()2X) r 2 dr

In order that the energy be independent of time, we set

5
7 (16)

Introducing x as the integration variable for arbitrary but fixed time t,
one obtains

E p Q~ L ~7(X) U 2 (X)+ 3 X ((x) - 1) +- Px) -1 .dx (17)
0

The solution for the shock wave is represented by the functions

u(r,t) = r - 1/2 U(x)

p(r,t) = Xr-3 P(x)

c(r, t) = Ur -2 qX)

X = (r)4/2 1

where U(x), P(x) and Q(x) have to be determnined from the system of
fii st order ordinary differential equations

6
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(Zx- 3cxT)Q' + C (U-3xTf) 0

JJ(2x 2 - 3exU) UI+(eU 6) T+3Xe(2P-xPr) 0 (19)L
-v -3

(2x2- 3CxU)(PQ-Y)' + 2£ (Zy-3) U PC - y = 0

with

= -
3
f
2  (20)

The initial conditions for U(x), P(x) and z(x) are obtained from the
Rankine-Hugoniot relations at the shock front x z 1. First one der-
ives from equation (13) the velocity for the shock front

1 t-1/3 2 R-1/2 (21)
3 3£

Equations (6) become

F 4 u - 9vEc _1 
-11 2

F 8S1 A - 9 ( y- I ) X E: 2 -  -Pi = L 9 (y+l2 J R

L 212(Y+I) -R

=z'I(.l)+9yx_£_

On the other hand, the same values for u1 , P, and P, are obtained
from equations (18) if we set r = R and x = 1. The desired initial
conditions are therefore

4-9 yX g

U() = 31i(y+1) (23)

7
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i
P(l) 8k- 9(Y-1) XP( 9 (Y ) 6

9(y+L) (23)

2,A(V -l)+9gy e

The integration of the differential equations (19) can be reduced to
the problem of solving a second order ordinary differential equation
for U(x) and determining P(x) and D(x) by quadratures. With the

abbreviations

E(3xL' -U)
2x 2 - 3cxU

2c(2y -3)U (24)2x 2 -3CxU

ZX U, - (3xU - U) U -23Xc L

it follows from the first and third equation in (19) that
x
I dx

Q(x) D(l) e1

x (25)
f; (+Y ) dx

P(x) P(l) e-

These explicit expressions for O(x) and P(x) lead to

xP'-2P _ P(1)Fe, x(T+Y)- d
Q D -( I ) L ( 2 6 )

The second equation in (19) reads

Ix A'I

xP'-2P A =(l)- T dx (27)

8
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Equations (26) and , ' furnish

X' [x(Yv ) 2]' A'
-( e - -2 dxP(A) 1 x('-l+y#) -2 A-- In?(l)A(i) ' ( - ;:

(28)

This cquation holds identically in x, J.f and only if the equations

x(Y+Yf)-2] A'' ( -l x '¥ -2 0

(29)

P() [f(1)+ v(l) -2]
Q(1)A(1)

are satisfied. Here the first equation represents the second order
ordinary differential equation for U(x), while the second equation
furnishes the required initial value U'(1) on substitution of (24).

For given physical constants Y, X and P, the solutions of equations

(25) and (29) will be functions of x and of the parameter E. If Y= 3/2,
the flow is isentropic.

It is meaningful to ask under what conditions the pressure p and the
density P remain positive, Equations (18) require that P(x) and
11(x) be positive. According to equations (25), this is the case if
the integrals over 6 and { exist and both constants Qi) and P(1)
are positive. It follows then from the second of equations (23) that
the parameter E has to be restricted to the interval

2
0 < < (30)

Equation (17), after inserting the solutions U(x, C), P(x, C) and

0 (x, C) and integrating, gives the relation between the energy E
supplied by the explosion and the parameter C. If C varies between

the limits given in (30), E may range between zero and infinity.
Solving equation (17) for C (or 0), one arrives finally at the result
that the position of the shock front at time t after the explosion i Q
determined by the distance

2

r = R(t) (V, X,., E) • t (31)

9
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It is interesting to compare this result with that obtained by Taylor
[ 1] in the case of a strong shock, where density and pressure out-
side the wave are assumed to be constant and zero, respectively,
and gravity is neglected. His result states t~lat the shock front can
be localized by th distance r - R(t) - ';!..- w h2/6 e %,here the constant
0* is determined in a similar manner ab 0 from the adiabatic

constant of the gas, the outside (constant) density and the energy
supplied by the explosion.

Comparison of the two results shows that the expansion velocity of
the wave in the present case is greater than that of Taylor's wave,
at least from a certain time on, dependIng on the ratio of the constants
CY and 0 . This fact, of course, follows from the different assumptions
made; it might be accounted for by the assumed density and pressure
distribution only, since the gravity might be expected to cause the
opposite effect. Nevertheless, it is remarkable that this is true also

if the shock is weak.

10
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